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Motivations Numeri
al tools Linear dynami
s Non-linear dynami
s Con
lusionsMotivationsTransient behaviour of a separated boundary layer �ow
The dynami
s of a separated boundary layer is 
ru
ial in manyengineering appli
ations, su
h as airplane wings or turboma
hineryblades.Even at sub
riti
al Reynolds numbers, re
ir
ulation bubbles 
ouldexhibit an high ampli�
ation of perturbation, due to the intera
tionof non-normal modes.Su
h a transient ampli�
ation, together with non-linear intera
tionsbetween modes and an high sensitivity of the �ow to for
ing 
ouldlead the �ow to a sub
riti
al transition.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numeri
al tools Linear dynami
s Non-linear dynami
s Con
lusionsDire
t Numeri
al SimulationDire
t Numeri
al Simulation2D non-dimensional in
ompressible Navier-Stokes equations
ut + (u · ▽)u = −▽ p +

1

Re
▽2

u, (1)
▽ · u = 0,where u = (u, v)T is the velo
ity ve
tor, p is the pressure and Re = U∞δ∗

νFra
tional step method on a staggeredgrid.Spatial dis
retization: 
entered se
ondorder for the linear terms, 
ompa
tsixth order for the non-linear terms(Chu & Fan 1999).Temporal dis
retization:Crank�Ni
holson for the vis
ous terms,third-order low-storage Runge-Kuttafor the non-linear terms.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numeri
al tools Linear dynami
s Non-linear dynami
s Con
lusionsGlobal modelGlobal modelThe instantaneous variables q = (u, v, p)T are 
onsidered as a superposition ofthe base �ow and of the perturbation q̃ = (ũ, ṽ, p̃)T .De
omposition of the perturbations in a temporal modes basis
q̃(x, y, t) =

Nt∑

k=1

κ0

k q̂k(x, y) exp (−iωkt) , (2)where Nt is the number of modes, q̂k are the eigenve
tors, ωk are the
omplex eigenmodes, and κ0

k is the initial amplitude of ea
h mode.Substituting in the NS equations and a linearizing lead to the followingeigenvalue problem
(A − iωkB) q̂k = 0, k = 1, . . . , Nt. (3)whi
h is dis
retized with a Chebyshev/Chebyshev spe
tral methodemploying Nt = 850 modes on a 270 × 50 grid, and it is solved with ashift and invert Arnoldi algorithm using the ARPACK library.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow
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sAsymptoti
 dynami
s
The eigenve
tors 
orresponding to themodes on the most unstable bran
h, arereminis
ent of the 
lassi
al TS modespredi
ted by a lo
al approa
h.
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The Global Eigenvalue Analysis (GEA) hasbeen performed on the base �ow at
Re = 200. The spe
trum is found to bestable. Three families of modes 
an bedete
ted, two of them having a very lowgrowth rate.
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Motivations Numeri
al tools Linear dynami
s Non-linear dynami
s Con
lusionsOptimal growth dynami
sOptimal energy gainThe maximum energy gain at time t over allpossible initial 
onditions u0 is de�ned as:
G (t) = max

u0 6=0

E (t)

E (0)
. (4)where E (t) = 1

2

∫ Lx

0

∫ Ly

0

(
ũ2 + ṽ2

)
dxdyBy de
omposing the perturbation into the eigenmodesbasis (2), it is possible to rewrite it as

G(t) = ||F exp(−itΛ)F−1||2
2

= ||Γ||where Λk,l = δk,lωk and F is the Cholesky fa
tor ofthe energy matrix M of 
omponents
Mij =

R R `

û∗

i ûj + v̂∗i v̂j

´

dxdy, i, j = 1, . . . , NThe maximum gain at time t and the 
orresponding u0,are 
omputed by a singular value de
omposition of Γ.
t

G
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Maximum energy gain G(t)
omputed with N = 400modes.The peak rea
hes amaximum of 108, meaning thatthe �ow has an high degree ofnon-normality.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow
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sOptimal perturbation
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Optimal perturbation at t = 0, 200, 4001 The initial energy of the optimalperturbation is 
on
entrated at theupstream part of the bubble.2 The disturban
e is 
onve
teddownstream along the separationstreamline → KH ampli�
ation.3 The perturbation is 
onve
tedthrough the atta
hed boundary layer,where it is damped.The ampli�
ation is due to the lo
al
onve
tive instability of the velo
itypro�les within the bubble, whi
h leads to aglobal growth of perturbations.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow
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s Non-linear dynami
s Con
lusionsWeakly to fully non-linear dynami
sWeakly to fully non-linear dynami
sEnergy evolution in time of the optimal initial perturbation by DNS
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1 Perturbation amplitude of order
10−8

→ the dynami
s is very similarto the linear one, obtained by GEA. t
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1 Perturbation amplitude of order 10−4

→ the 
urve saturate at 107 after havingfollowed the linear one in the algebrai
growth phase, and de
ays.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numeri
al tools Linear dynami
s Non-linear dynami
s Con
lusionsNon-linear dynami
s of the separated regionNon-linear energy gainVorti
ity 
ontours at wall Non-linear dynami
s(perturbation of order 10−4)The de
aying rate is lower than the linearone, due to the 
apability of the non-linearterms to transfer the energy betweenmodes.The perturbation is driven ba
k in theseparated zone, where it intera
ts with themain part of the wave pa
ket, originatinga se
ond wave pa
ket within the bubble,whi
h is 
onve
ted in the atta
hed region.A wave pa
ket 
y
le begins to beestablished, but is eventually damped.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow
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al tools Linear dynami
s Non-linear dynami
s Con
lusionsNon linear dynami
s of the atta
hed regionNon linear dynami
s for longer domains
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For a longer 
omputational domain,
L = 5 · Lx, the perturbation is stillampli�ed for 1000<t<4000 (blue line)while it is damped in the smallperturbation 
ase (bla
k line).The perturbation is ampli�ed while it is
onve
ted through the atta
hed zone,
ausing a further transient global growthof the energy until it leaves the domain.The �ow downstream of the bubble is
onve
tively non-linearly unstable thoughlinearly stable.
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Motivations Numeri
al tools Linear dynami
s Non-linear dynami
s Con
lusionsNon linear dynami
s of the atta
hed regionConve
tive analysisWhi
h is the me
hanism indu
ing su
h an ampli�
ation?The leading mode at di�erent x lo
ations downstream of the bubble is soughtby means of a Fourier transform in time of u′:immediately downstream of the bubble, we found ωr ≈ 0.08,
orresponding to the less stable eigenvalue of the global spe
trumfor in
reasing abs
issa we found ωr ≈ 0.045, lying in the range of thelo
ally spatially unstable frequen
ies at su
h x lo
ations.The ex
itation of su
h a lo
ally unstable mode leads to the spatialampli�
ation of the wave pa
ket
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al tools Linear dynami
s Non-linear dynami
s Con
lusionsNon linear dynami
s of the atta
hed regionSensitivity analysisWhi
h me
hanism is able to trigger su
h mode?The strong in�uen
e of the perturbation amplitude on the behaviour of the �ow 
ould bedue to an high sensitivity to real for
ing. Although the �ow is not dire
tly for
ed with aspe
i�
 mode, di�erent frequen
ies are present in the perturbed �ow due to the initialimpulsive for
ing.In order to investigate the sensitivity of the �ow, a for
ing term q̃fe−iσt is added in theevolution equation, with σ a real frequen
y. The sensitivity to a real exterior frequen
y isdetermined through the evaluation of the pseudospe
trum of the global linear operator,de�ned as λε = {σ ∈ C, ||(iσB − A)−1|| ≥ ε−1} represented here in s
ale −log10.
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The lo
ally unstable modewith ωr ≈ 0.045 lies in therange of the highly sensitivemodes, the minimalperturbation amplitudetriggering su
h frequen
ybeing approximately 10−6Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow
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lusionsNon linear dynami
s of the atta
hed regionCriti
al amplitude
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Is that '
riti
al perturbation' physi
al?DNS simulations show that su
h a spatialampli�
ation begins to be re
overed foramplitudes equal to 10−6 → the results ofthe sensitivity analysis are 
on�rmed.Is that behaviour general?For in
reasing but sub
riti
al Reynoldsnumbers (Re = 220), amplitudes of order
10−4 have been found able to triggerasymptoti
 instability (bla
k line). Theleading pulsation is again ωr ≈ 0.045 , whi
his spatially unstable immediately downstreamof the bubble. It is likely that in a non-linearframework 
onve
tive unstable modes areable to trigger asymptoti
al instability dueto the high sensitivity of the �ow.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numeri
al tools Linear dynami
s Non-linear dynami
s Con
lusionsCon
lusionsIn a fully non-linear framework, the separated region has been foundto saturate, leading to a wave pa
ket 
y
le whi
h is eventuallydamped.The atta
hed region has been found to show a 
onve
tiveinstability, due to the high sensitivity of the 
onsidered �ow toexternal for
ing, leading to a transient growth of perturbations whenit is not predi
ted by the linear eigenvalue model.Su
h a me
hanism linking 
onve
tive unstability and sensitivity toexternal for
ing is likely to trigger asymptoti
al instability when itis not predi
ted by the linear analysis.
Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow
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