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Motivations

Motivations

Transient behaviour of a separated boundary layer flow

——— |\

@ The dynamics of a separated boundary layer is crucial in many

engineering applications, such as airplane wings or turbomachinery
blades.

@ Even at subcritical Reynolds numbers, recirculation bubbles could

exhibit an high amplification of perturbation, due to the interaction
of non-normal modes.

@ Such a transient amplification, together with non-linear interactions
between modes and an high sensitivity of the flow to forcing could

lead the flow to a subcritical transition.
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Numerical tools

Direct Numerical Simulation

Direct Numerical Simulation

2D non-dimensional incompressible Navier-Stokes equations

1
u+(u-v)u = —wwﬁv%, (1)

v-ua = 07
Usod™

where u = (u,v)” is the velocity vector, p is the pressure and Re = St

@ Fractional step method on a staggered
grid.

H\r Suction and blowing profile
N

@ Spatial discretization: centered second
pati r\luuyﬁmﬁmﬁmm

order for the linear terms, compact

i X Blasius >Ouﬂow_

sixth order for the non-linear terms profile convective
conditions

(Chu & Fan 1999).

@ Temporal discretization: =" S « H—

Crank—Nicholson for the viscous terms, No slip conditions

third-order low-storage Runge-Kutta

for the non-linear terms. o o - - = waw
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Numerical tools

Global model

Global model

The instantaneous variables q = (u, v, p)” are considered as a superposition of

the base flow and of the perturbation § = (i, %,5)7.

Decomposition of the perturbations in a temporal modes basis

Nt
Q(x7 Y, t) = Z ’%g CAlk (ZIJ, y) exp (_Zwkt) ) (2)
k=1

where Ny is the number of modes, qj are the eigenvectors, wy, are the
complex eigenmodes, and 9 is the initial amplitude of each mode.

Substituting in the NS equations and a linearizing lead to the following
eigenvalue problem

(A—ika)flk:O, k‘Zl,...,Nt. (3)

which is discretized with a Chebyshev/Chebyshev spectral method
employing Ny = 850 modes on a 270 x 50 grid, and it is solved with a
shift and invert Arnoldi algorithm using the ARPACK ligrary. _
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Linear dynamics

Asymptotic dynamics

Asymptotic dynamics

The Global Eigenvalue Analysis (GEA) has
been performed on the base flow at

Re = 200. The spectrum is found to be
stable. Three families of modes can be
detected, two of them having a very low
growth rate.
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The eigenvectors corresponding to the

modes on the most unstable branch, are
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Linear dynamics

Optimal growth dynamics

Optimal energy gain

The maximum energy gain at time ¢ over all
possible initial conditions ug is defined as:

_ E(t)
G(8) = max 7o) (4)
where E (t) = 3 [ OLy (0 +0?) dady

By decomposing the perturbation into the eigenmodes
basis (2), it is possible to rewrite it as

G(t) = ||F exp(—itA)F ' ||3 = ||T|

where Ay ; = 0wy and F is the Cholesky factor of
the energy matrix M of components

My = [ [ (aFa; +079;) dedy, 4,5 =1,...,N

The maximum gain at time ¢ and the corresponding ug,
are computed by a singular value decomposition of T'.
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Maximum energy gain G(t)
computed with N = 400
modes. The peak reaches a
maximum of 10®, meaning that
the flow has an high degree of
non-normality.
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Linear dynamics

Optimal growth dynamics

Optimal perturbation
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Optimal perturbation at ¢ = 0, 200, 400

@ The initial energy of the optimal
perturbation is concentrated at the
upstream part of the bubble.

@ The disturbance is convected
downstream along the separation
streamline — KH amplification.

© The perturbation is convected
through the attached boundary layer,
where it is damped.

The amplification is due to the local
convective instability of the velocity
profiles within the bubble, which leads to a
global growth of perturbations.
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Non-linear dynamics

Weakly to fully non-linear dynamics

Weakly to fully non-linear dynamics

Energy evolution in time of the optimal initial perturbation by DNS
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@ Perturbation amplitude of order @ Perturbation amplitude of order 10~
10~% — the dynamics is very similar — the curve saturate at 107 after having
to the linear one, obtained by GEA. followed the linear one in the algebraic

growth phase, an%decays.
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Non-linear dynamics

Non-linear dynamics of the separated region

Non-linear energy gain

Vorticity contours at wall

Linear wave packet

Non-linear dynamics
800

(perturbation of order 10~%)

y @ The decaying rate is lower than the linear
one, due to the capability of the non-linear
terms to transfer the energy between

s modes.

@ The perturbation is driven back in the
Non linear wave packet separated zone, where it interacts with the
main part of the wave packet, originating
a second wave packet within the bubble,
which is convected in the attached region.

@ A wave packet cycle begins to be
established, but is eventually damped.
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Non-linear dynamics

Non linear dynamics of the attached region

Non linear dynamics for longer domains

@ For a longer computational domain,

100 ——— Amplitude 107 L =5 Lg, the perturbation is still

wl Amplitude 10 amplified for 1000<t<4000 (blue line)

wh while it is damped in the small

ol perturbation case (black line).
%:ms. @ The perturbation is amplified while it is
S0t convected through the attached zone,
w

10° causing a further transient global growth
of the energy until it leaves the domain.

10°

10t} @ The flow downstream of the bubble is

10} s 5 b convectively non-linearly unstable though
t

linearly stable.
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Non-linear dynamics

Non linear dynamics of the attached region

Convective analysis

Which is the mechanism i i amplification?

The leading mode at different x locations downstream of the bubble is sought
by means of a Fourier transform in time of u':

@ immediately downstream of the bubble, we found w, = 0.08,
corresponding to the less stable eigenvalue of the global spectrum

@ for increasing abscissa we found w, =~ 0.045, lying in the range of the
locally spatially unstable frequencies at such z locations.

The excitation of such a locally unstable mode leads to the spatial
amplification of the wave packet
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Non-linear dynamics

Non linear dynamics of the attached region

Sensitivity analysis

Which mechanism is able to trigger such mode?

The strong influence of the perturbation amplitude on the behaviour of the flow could be
due to an high sensitivity to real forcing. Although the flow is not directly forced with a
specific mode, different frequencies are present in the perturbed flow due to the initial
impulsive forcing.

In order to investigate the sensitivity of the flow, a forcing term §e™"" is added in the
evolution equation, with o a real frequency. The sensitivity to a real exterior frequency is
determined through the evaluation of the pseudospectrum of the global linear operator,
defined as \. = {0 € C,||(icB — A)7!|| > 7'} represented here in scale —logio.

0 o B 95 The locally unstable mode
s % ' with w, ~ 0.045 lies in the

-0.005 i 6 range of the highly sensitive
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-0.015 triggering such frequency
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Non linear dynamics of the attached region

Critical amplitude

Non-linear dynamics
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Is that 'critical perturbation’ physical?

DNS simulations show that such a spatial
amplification begins to be recovered for
amplitudes equal to 107® — the results of
the sensitivity analysis are confirmed.

Is that behaviour general?

For increasing but subcritical Reynolds
numbers (Re = 220), amplitudes of order
10~* have been found able to trigger
asymptotic instability (black line). The
leading pulsation is again w, ~ 0.045 , which
is spatially unstable immediately downstream
of the bubble. It is likely that in a non-linear
framework convective unstable modes are
able to trigger asymptotical instability due
to the high sensitivity of the flow.
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Conclusions

Conclusions

@ In a fully non-linear framework, the separated region has been found
to saturate, leading to a wave packet cycle which is eventually
damped.

@ The attached region has been found to show a convective
instability, due to the high sensitivity of the considered flow to
external forcing, leading to a transient growth of perturbations when
it is not predicted by the linear eigenvalue model.

Such a mechanism linking convective unstability and sensitivity to
external forcing is likely to trigger asymptotical instability when it
is not predicted by the linear analysis.
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