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Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsMotivationsTransient behaviour of a separated boundary layer �ow
The dynamis of a separated boundary layer is ruial in manyengineering appliations, suh as airplane wings or turbomahineryblades.Even at subritial Reynolds numbers, reirulation bubbles ouldexhibit an high ampli�ation of perturbation, due to the interationof non-normal modes.Suh a transient ampli�ation, together with non-linear interationsbetween modes and an high sensitivity of the �ow to foring ouldlead the �ow to a subritial transition.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsDiret Numerial SimulationDiret Numerial Simulation2D non-dimensional inompressible Navier-Stokes equations
ut + (u · ▽)u = −▽ p +

1

Re
▽2

u, (1)
▽ · u = 0,where u = (u, v)T is the veloity vetor, p is the pressure and Re = U∞δ∗

νFrational step method on a staggeredgrid.Spatial disretization: entered seondorder for the linear terms, ompatsixth order for the non-linear terms(Chu & Fan 1999).Temporal disretization:Crank�Niholson for the visous terms,third-order low-storage Runge-Kuttafor the non-linear terms.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsGlobal modelGlobal modelThe instantaneous variables q = (u, v, p)T are onsidered as a superposition ofthe base �ow and of the perturbation q̃ = (ũ, ṽ, p̃)T .Deomposition of the perturbations in a temporal modes basis
q̃(x, y, t) =

Nt∑

k=1

κ0

k q̂k(x, y) exp (−iωkt) , (2)where Nt is the number of modes, q̂k are the eigenvetors, ωk are theomplex eigenmodes, and κ0

k is the initial amplitude of eah mode.Substituting in the NS equations and a linearizing lead to the followingeigenvalue problem
(A − iωkB) q̂k = 0, k = 1, . . . , Nt. (3)whih is disretized with a Chebyshev/Chebyshev spetral methodemploying Nt = 850 modes on a 270 × 50 grid, and it is solved with ashift and invert Arnoldi algorithm using the ARPACK library.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsAsymptoti dynamisAsymptoti dynamis
The eigenvetors orresponding to themodes on the most unstable branh, arereminisent of the lassial TS modespredited by a loal approah.
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The Global Eigenvalue Analysis (GEA) hasbeen performed on the base �ow at
Re = 200. The spetrum is found to bestable. Three families of modes an bedeteted, two of them having a very lowgrowth rate.
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Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsOptimal growth dynamisOptimal energy gainThe maximum energy gain at time t over allpossible initial onditions u0 is de�ned as:
G (t) = max

u0 6=0

E (t)

E (0)
. (4)where E (t) = 1

2

∫ Lx

0

∫ Ly

0

(
ũ2 + ṽ2

)
dxdyBy deomposing the perturbation into the eigenmodesbasis (2), it is possible to rewrite it as

G(t) = ||F exp(−itΛ)F−1||2
2

= ||Γ||where Λk,l = δk,lωk and F is the Cholesky fator ofthe energy matrix M of omponents
Mij =

R R `

û∗

i ûj + v̂∗i v̂j

´

dxdy, i, j = 1, . . . , NThe maximum gain at time t and the orresponding u0,are omputed by a singular value deomposition of Γ.
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Maximum energy gain G(t)omputed with N = 400modes.The peak reahes amaximum of 108, meaning thatthe �ow has an high degree ofnon-normality.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsOptimal growth dynamisOptimal perturbation
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Optimal perturbation at t = 0, 200, 4001 The initial energy of the optimalperturbation is onentrated at theupstream part of the bubble.2 The disturbane is onveteddownstream along the separationstreamline → KH ampli�ation.3 The perturbation is onvetedthrough the attahed boundary layer,where it is damped.The ampli�ation is due to the loalonvetive instability of the veloitypro�les within the bubble, whih leads to aglobal growth of perturbations.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsWeakly to fully non-linear dynamisWeakly to fully non-linear dynamisEnergy evolution in time of the optimal initial perturbation by DNS
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→ the dynamis is very similarto the linear one, obtained by GEA. t
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1 Perturbation amplitude of order 10−4

→ the urve saturate at 107 after havingfollowed the linear one in the algebraigrowth phase, and deays.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsNon-linear dynamis of the separated regionNon-linear energy gainVortiity ontours at wall Non-linear dynamis(perturbation of order 10−4)The deaying rate is lower than the linearone, due to the apability of the non-linearterms to transfer the energy betweenmodes.The perturbation is driven bak in theseparated zone, where it interats with themain part of the wave paket, originatinga seond wave paket within the bubble,whih is onveted in the attahed region.A wave paket yle begins to beestablished, but is eventually damped.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsNon linear dynamis of the attahed regionNon linear dynamis for longer domains
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For a longer omputational domain,
L = 5 · Lx, the perturbation is stillampli�ed for 1000<t<4000 (blue line)while it is damped in the smallperturbation ase (blak line).The perturbation is ampli�ed while it isonveted through the attahed zone,ausing a further transient global growthof the energy until it leaves the domain.The �ow downstream of the bubble isonvetively non-linearly unstable thoughlinearly stable.
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Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsNon linear dynamis of the attahed regionConvetive analysisWhih is the mehanism induing suh an ampli�ation?The leading mode at di�erent x loations downstream of the bubble is soughtby means of a Fourier transform in time of u′:immediately downstream of the bubble, we found ωr ≈ 0.08,orresponding to the less stable eigenvalue of the global spetrumfor inreasing absissa we found ωr ≈ 0.045, lying in the range of theloally spatially unstable frequenies at suh x loations.The exitation of suh a loally unstable mode leads to the spatialampli�ation of the wave paket
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Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsNon linear dynamis of the attahed regionSensitivity analysisWhih mehanism is able to trigger suh mode?The strong in�uene of the perturbation amplitude on the behaviour of the �ow ould bedue to an high sensitivity to real foring. Although the �ow is not diretly fored with aspei� mode, di�erent frequenies are present in the perturbed �ow due to the initialimpulsive foring.In order to investigate the sensitivity of the �ow, a foring term q̃fe−iσt is added in theevolution equation, with σ a real frequeny. The sensitivity to a real exterior frequeny isdetermined through the evaluation of the pseudospetrum of the global linear operator,de�ned as λε = {σ ∈ C, ||(iσB − A)−1|| ≥ ε−1} represented here in sale −log10.
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The loally unstable modewith ωr ≈ 0.045 lies in therange of the highly sensitivemodes, the minimalperturbation amplitudetriggering suh frequenybeing approximately 10−6Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsNon linear dynamis of the attahed regionCritial amplitude
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Is that 'ritial perturbation' physial?DNS simulations show that suh a spatialampli�ation begins to be reovered foramplitudes equal to 10−6 → the results ofthe sensitivity analysis are on�rmed.Is that behaviour general?For inreasing but subritial Reynoldsnumbers (Re = 220), amplitudes of order
10−4 have been found able to triggerasymptoti instability (blak line). Theleading pulsation is again ωr ≈ 0.045 , whihis spatially unstable immediately downstreamof the bubble. It is likely that in a non-linearframework onvetive unstable modes areable to trigger asymptotial instability dueto the high sensitivity of the �ow.Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow



Motivations Numerial tools Linear dynamis Non-linear dynamis ConlusionsConlusionsIn a fully non-linear framework, the separated region has been foundto saturate, leading to a wave paket yle whih is eventuallydamped.The attahed region has been found to show a onvetiveinstability, due to the high sensitivity of the onsidered �ow toexternal foring, leading to a transient growth of perturbations whenit is not predited by the linear eigenvalue model.Suh a mehanism linking onvetive unstability and sensitivity toexternal foring is likely to trigger asymptotial instability when itis not predited by the linear analysis.
Cherubini, Alizard, Robinet, De Palma Linear and Non-linear Transient Behaviour of a Separated Flow
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